![化学热处理实用技术](https://wfqqreader-1252317822.image.myqcloud.com/cover/199/41807199/b_41807199.jpg)
第3章 碳氮共渗工艺及其应用
3.1 概述
碳氮共渗(俗称氰化)系指在奥氏体状态下同时将碳、氮渗入工件表层,并以渗碳为主的化学热处理工艺。其目的是使工件在保持心部较高韧性的条件下,表面层获得高硬度,以提高其耐磨性和抗疲劳性能等。
碳氮共渗层比渗碳层具有更高的耐磨性、疲劳强度和耐蚀性;比渗氮层有更高的抗压强度和更低的表面脆性,而且生产周期短、渗速快、适用材料广泛。碳氮共渗的性能和工艺方法等与渗碳基本相似,但由于氮原子的渗入,又有其特点。
3.1.1 氮原子的渗入对渗层组织转变的影响
氮原子的渗入对碳氮共渗渗层组织转变的影响,见表3.1。
表3.1 氮原子的渗入对碳氮共渗渗层组织转变的影响
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image295.jpeg?sign=1739487502-QTh6VNKDxD7mperHt0c1jiQKBLEmfLIm-0-aaacdb3ca358e378de4dd640c164b27f)
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image296.jpeg?sign=1739487502-yPOuusizcZ7IcxugktYc4bWm44Y7wwpH-0-77f28b42f41f2d5971893ed0c62b405c)
图3.1 20钢[成分(质量分数):C 0.17%~0.24%,Si 0.10%~0.20%,Mn 0.30%~0.60%]碳氮共渗和渗碳层端淬曲线对比
3.1.2 碳氮共渗的特点
(1)碳氮共渗化学热处理的特点 见表3.2。
表3.2 碳氮共渗化学热处理的特点
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image297.jpeg?sign=1739487502-5jFjUjWPs26M6UxEa8FMyYJE25AeB3u6-0-532c645e89b616e9535cb82c96942781)
表3.3 氮和碳对临界点的影响
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image298.jpeg?sign=1739487502-N6OIXb1C07TCszTWszZD9KCtm3D0rauC-0-ca3f35d4b48b82e8f052019cc880ae54)
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image299.jpeg?sign=1739487502-SCcBVWsoVi7N8gB0hJEy66ucR8wrxhoc-0-99e79ab501ae889ab58142549dfc30e3)
图3.2 碳、氮在共渗层中的分布曲线
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image300.jpeg?sign=1739487502-wisgcvHuXireCqg6HSnVh8B3momMHI3J-0-97298f5867390cbb981059057f66250b)
图3.3 温度对碳氮共渗层和渗碳层深度影响
(2)碳氮共渗的工艺特点 见表3.4。
表3.4 碳氮共渗的工艺特点
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image301.jpeg?sign=1739487502-VypR5Ydytvm4ACHjUd2Id4ND1pc8Zaow-0-37411ec4dedf96a6e031c5173cafb2f4)
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image302.jpeg?sign=1739487502-G0cKVEL72cu0KEhjzHWnZV0W5apIvTiE-0-dbc08b605c2e912bc245b9e271573b4b)
图3.4 共渗温度对共渗层中碳、氮含量的影响
(a)50%CO+50%NH3气体;(b)23%~27%NaCN盐浴;(c)50% NaCN盐浴共渗;(d)30% NaCN+8.5% NaCNO+25% NaCl+36.5%Na2CO3
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image303.jpeg?sign=1739487502-HqiE3S4dTWWza8ySf2sjXzTdLqtAjx8u-0-1cd524063e5aa6016024959ef1206c5a)
图3.5 碳氮共渗时间对渗层碳、氮含量的影响
(a)不同保温时间下共渗层表面碳、氮含量(T8钢,温度800℃,渗剂:苯+氨);(b)不同保温时间下共渗层截面中氮含量分布(30CrMnTi,渗剂:三乙醇胺,温度850℃)
3.1.3 碳氮共渗工艺的分类
碳氮共渗工艺的分类见表3.5。
表3.5 碳氮共渗工艺的分类
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image304.jpeg?sign=1739487502-x2olrdVhZBKV3drBjQmDihzFMvmCZm2S-0-ee20f739603c57f1f4dc9ce6a2485213)
3.1.4 碳氮共渗的技术条件
碳氮共渗的技术条件见表3.6。
表3.6 碳氮共渗的技术条件
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image305.jpeg?sign=1739487502-t1sPYgvbgjVm0Nhsxxvn9o75HWjkzmVu-0-1bb48d41a18c578b1f86485230f35dfe)
表3.7 齿轮类工件的碳氮共渗层深度要求
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image306.jpeg?sign=1739487502-55KYMoLfL1ms8mXsLkjyW2orkIvcoHyI-0-d0e75189e0c9bb399ab04a06d8bddfcb)
表3.8 按照服役条件、承载能力选取共渗层深度的要求
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image307.jpeg?sign=1739487502-gLO710EdUXw0E1Oibm93cmB9TrPmXWMY-0-16c174e02d667e6657fcab41d286d425)
3.1.5 碳氮共渗用材及共渗后的热处理
(1)碳氮共渗用材 见表3.9。对碳氮共渗用钢力学性能、工艺性能及钢材质量方面的要求与渗碳钢基本相同,因此一般渗碳钢均可用于碳氮共渗。
表3.9 碳氮共渗工艺适用的材料范围
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image308.jpeg?sign=1739487502-ZNAnzZp59pZjEMvArinRP6gQYifPAJ4n-0-fa802b1430040e1dba00b232cdbdfea0)
(2)碳氮共渗后的热处理 与渗碳相比,碳氮共渗过程处理温度较低,一般不会发生晶粒长大,故共渗后通常进行直接淬火和回火。常用结构钢碳氮共渗后热处理工艺及表面硬度见表3.10。碳氮共渗零件热处理各工艺方案的特点见表3.11。
表3.10 常用结构钢碳氮共渗后热处理工艺及表面硬度
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image309.jpeg?sign=1739487502-bz1UIDaQt8yhODwCdpMZreNEHV5gZwGH-0-a7c645eefc1d177bfcb1e06b40fa471f)
表3.11 碳氮共渗零件热处理各工艺方案的特点
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image310.jpeg?sign=1739487502-DhX6h5G0CugM5eQVg21wuo8YwVdEUJEc-0-0541002ccbe19753207c77e90c8e7755)
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image311.jpeg?sign=1739487502-iclSr00thtV2YtyPDyuQ2XMEk4zwILt8-0-f6a38fa1c29f72ecf72b676849d9c73d)
3.1.6 碳氮共渗件的组织与性能
碳氮共渗件的组织与性能见表3.12。
表3.12 碳氮共渗件的组织特征与力学性能
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image312.jpeg?sign=1739487502-4vmVHTr98lamofPWfHaSFoD7Kpfnx5IF-0-900e1dbd1a762f095ae111967df696e3)
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image313.jpeg?sign=1739487502-qFfJ9cmHQagb3EY1oLSEnt9MPJfKf7c4-0-9152dd4cba6178507a9052712e80eb50)
图3.6 低碳钢碳氮共渗后的平衡组织(100×)
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image314.jpeg?sign=1739487502-FEmkciCDP21lwi0Qn3BXYqTlkD7hGXOn-0-55220209942f53c3cf7c25e18bbf7a52)
图3.7 40Cr钢齿轮共渗后直接淬火组织(100×)
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image315.jpeg?sign=1739487502-GBfGPphpJ9DIJSvqhkfjNHMALiOgLxfr-0-3dd5d814999ceef662b857585d92c0cf)
图3.8 850℃碳氮共渗和渗碳淬火硬度比较(20Mn2TiB钢)
表3.13 几种钢碳氮共渗及渗碳后的耐磨性对比
![](https://epubservercos.yuewen.com/BDA06E/21838940008280806/epubprivate/OEBPS/Images/image316.jpeg?sign=1739487502-QQxQHM1xyjiIfWb8wZEp2D4JjeXiJ0Ue-0-c104c5495c0cb6fcbec600005d319bb2)