洛氏妄想曲
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人

第20章 莱茵哈特基数(英)

A cardinal κ is Reinhardt if there is an elementary embedding

j : V → V

with critical point κ.

Theorem (Kunen, 1971)

ZFC implies that Reinhardt cardinals don’t exist. In fact, there is

no non-trivial elementary embedding

j : Vλ+2 → Vλ+2

Definition

κ is super Reinhardt if for all ordinals λ there exists a non-trivial

elementary embedding j : V → V such that crit(j)=κ and

j(κ)>λ.

If A is a proper class, then κ is A -super Reinhardt if for all ordinals

λ there exists a non-trivial elementary embedding j : V → V such

that crit(j)=κ, j(κ)>λ, and j(A)= A, where

j(A):= S

α∈OR j(A ∩ Vα).

κ is totally Reinhardt if for each A ∈ Vκ+1,

hVκ, Vκ+1i |= ZF2 +“There is an A -super Reinhardt cardinal”