![复旦大学数学系《数学分析》(第3版)(下册)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/683/27032683/b_27032683.jpg)
第12章 傅里叶级数和傅里叶变换
12.1 复习笔记
一、函数的傅里叶级数展开
1.傅里叶级数
设f(t)是一个周期为T的波,在一定条件下可以把它写成
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2196.jpg?sign=1739593284-REy4SqSVQ20Qmd1pwQbOz471dAF4nAzs-0-ee9f4a25ea76f9d9776dca98a6d13b2c)
其中是n阶谐波,
,称上式右端的级数是由f(t)
所确定的傅里叶级数,它是一种三角级数.
2.三角函数系的正交性
考察三角函数系
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2199.jpg?sign=1739593284-pXbzH0mZ6obj5JFJjdCkJjrje0rTkdBI-0-119c20b915d88e30e77309a0284b0d85)
其中每一个函数在长为2π的区间上定义,其中任何两个不同的函数的乘积沿区间上的积分等于零,而每个函数自身平方的积分非零,则称这个函数系在长为2π的区间上具有正交性.
3.傅里叶系数
设函数f(x)已展开为全区间上的一致收敛的三角级数
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2200.jpg?sign=1739593284-ZUndTFCearHbDlWL7cteGlvH6G51fRCn-0-fe2a19ffa6877de8a91d88d8343fa947)
则
;
;
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2203.jpg?sign=1739593284-wv2wdcr9yWEKqS9qjFUeUB0lDwHji04u-0-6d8dfc220c8b6cc62919d2b190b6662c)
因此欧拉-傅里叶公式为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2204.jpg?sign=1739593284-80tZbFHq60i1YdsLAmNBIIyCJjf2bYCk-0-5f4b495cb0f3e683a13b625c65499ce5)
称三角级数
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2205.jpg?sign=1739593284-5n9Cg9qFmlIts9NsTJ9092ErL7tz1lUY-0-2bffa46058e8022204b62f4e9738f83b)
是f(x)关于三角函数系的傅里叶级数,而
称为f(x)的傅里叶系数,记为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2208.jpg?sign=1739593284-BvGAqfQuGrgzDsEufvm29ltA3P8wsf7N-0-1ae032c5c46daa20a1b4fe81ed193adb)
4.傅里叶级数的收敛判别法
设函数f(x)在[-π,π]上可积和绝对可积,且
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2209.jpg?sign=1739593284-2ftQWr6mdpqpPW6h4VhZoYkW9wWs17ho-0-517cddd71e0a1e362538ec790ec53ff7)
若f(x)在x点的左右极限f(x+0)和f(x-0)都存在,并且两个广义单侧导数
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2210.jpg?sign=1739593284-l1FaRTD8chYjH6vuD4JzO4FFzrJ5IwgW-0-9d10000531b75dbc6924c922308575f1)
都存在,则f(x)的傅里叶级数在x点收敛.当x是f(x)的连续点时它收敛于f(x),当x是f(x)的间断点(一定是第一类间断点)时它收敛于
5.傅里叶级数的复数形式
傅里叶级数的n阶谐波可以用复数形式表示.由欧拉公式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2213.jpg?sign=1739593284-xH1hftjVSCN5odZoJo8dZgs5rTTXcAwV-0-8b855150c9d35a9411fbc82f725c238e)
得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2214.jpg?sign=1739593284-KZyJE66uGKLUsUdAoVfROGq95uxF384t-0-077a45d3bf0eee8f1d5e266a9480ff3a)
记,则上面的傅里叶级数就化成一个简洁的形式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2216.jpg?sign=1739593284-jYcViU0Q1myr9BzHlgehR4hxSQAK8kMv-0-298397acbc2e116be3a3853892138f3b)
这就是傅里叶级数的复数形式,cn为复振幅,cn与c-n是一对共轭复数.其中
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2217.jpg?sign=1739593284-mLoa3iQ81opj9YVXXHq8HzC5OIeMBaxm-0-8974ea728b82d6da5e08c0763cbf9374)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2218.jpg?sign=1739593284-8oaoQrtqOt5SJbnmmmqAjbsRbjIaRIlS-0-e3404d80319f7394812cd84f75b0797f)
归结成一个形式,就是
(其中
n=0,±1,±2,…).
6.收敛判别法
(1)狄利克雷积分
设f(x)在[-π,π]上可积和绝对可积,它的傅里叶级数为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2221.jpg?sign=1739593284-l4obVf4CYkQAfQUTegQxaRbZBSCmsF13-0-f4fc3fd78565149caf361232aca99c7d)
其中
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2222.jpg?sign=1739593284-P4YofVN5tqEY511fgUmcARUwCLfSx58K-0-0367a0e55dbf9b8a2d67e2dc7bdec6aa)
傅里叶级数的部分和为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2223.jpg?sign=1739593284-Wt5zwLnWEpraJLv2PaILS3YLY4KDzH4T-0-d9e48e3a15a1606b5d26ec0962765b99)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2224.jpg?sign=1739593284-5zwJ923PbTbyL1u9c8wj2ZW62zkYa27T-0-da6ea5bc01e5468fc07b7b4e27b6e1fd)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2225.jpg?sign=1739593284-Fw8x09KOkPE7rPHP6g9iAJArasrggA0r-0-3996dac51a16df09c7702f6afc14cb77)
上面的几种积分表达式都称为狄利克雷积分.又因为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2227.jpg?sign=1739593284-kPxJOPfJpsTlg7Ul3BSeVBHTgrQlP6uB-0-e49079494279add4d8f85f94dae21c28)
所以
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2228.jpg?sign=1739593284-ECVUd6x3T1OTMoDbsakfDVvRBYmTOROi-0-1259143190c4641b7558a21f3fd4fc1a)
记,若能否取到适当的s,使
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2230.jpg?sign=1739593284-qCvtFN26bpWUzSOFDooAY8lwpYqwOIpu-0-aa73e820f4ee1931d1a56ca1f4d1edb2)
成立,则f(x)的傅里叶级数在x点就收敛于s.
(2)黎曼引理
设函数ψ(u)在区间[a,b]上可积和绝对可积,那么以下的极限式成立
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2231.jpg?sign=1739593284-Bye26BN47zCPizZlGmsS7HyQjUENRq0f-0-0660703407097bd766dd9abc444efcb8)
(3)傅里叶级数收敛性的判定
①迪尼(Dini)判别法(迪尼定理)
设能取到适当的s,使由函数f(x)以及x点所作出的满足条件:对某正数h,使在[0,h]上,
为可积和绝对可积,那么f(x)的傅里叶级数在x点收敛于s.
②利普希茨(Lipschitz)判别法(迪尼判别法的一个推论)
如果函数f(x)在x点连续,并且对于充分小的正数u,在x点的利普希茨条件
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2234.jpg?sign=1739593284-QconGDPi9iCe9jyAiRgQiJ6UqPoK9Mch-0-fab89faf163914f561d1a2c2eac6d6df)
成立,其中L,α皆是正数,且α≤1,那么f(x)的傅里叶级数在x点收敛于f(x).更一般地.如果对于充分小的u,成立L,α同前,那么f(x)的傅里叶级数在x点收敛于
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2236.jpg?sign=1739593284-i4Xi3mvDVQvZnVsZBjiN0ZTyaUSmY1Ks-0-53fb4c057e6c4b4d037ee7580ac7e788)
7.傅里叶级数的性质
(1)傅里叶系数与函数f(x)在整个积分区间上的值有关.
(2)局部性定理
函数f(x)的傅里叶级数在x点的收敛和发散情况,只和f(x)在这一点的充分邻近区域的值有关.
(3)可积和绝对可积函数的傅里叶系数趋于零,即
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2238.jpg?sign=1739593284-ci8lRhdnmgx2mAxvRCMCygjQ5EuYejPv-0-e068c87e2268feffe805b9c5a11be7c4)
(4)一致收敛性
①设周期为2π的可积和绝对可积函数f(x)在比[a,b]更宽的区间[a-δ,b+δ](其中δ>0)上有有界导数,那么f(x)的傅里叶级数在区间[a,b]上一致收敛于f(x);
②设周期为2π的可积和绝对可积函数f(x)在比[a,b]更宽的区间[a-δ,b+δ](其中δ>0)上连续且为分段单调函数,那么f(x)的傅里叶级数在区间[a,b]上一致收敛于f(x).
(5)傅里叶级数的逐项求积和逐项求导
设f(x)是[-π,π]上的分段连续函数,它的傅里叶级数是
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2240.jpg?sign=1739593284-uvLGKwyeGnz4UZP3B4ZQVwbvzMbXNH7t-0-f100cc51a384a66137f7e5a0a5e7dc6a)
则右端级数可以逐项积分,设c和x是[-π,π]上任意两点,则有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2241.jpg?sign=1739593284-fmp9Ugr3gx2dSdcYfJ2C3stSYWzXi3Ep-0-6c4835cbf0be79783b773058f0ef6774)
(6)最佳平方平均逼近
设是任意一个n次三角多项式
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2243.jpg?sign=1739593284-S08YmpWe6LPI4ryfewmkYCMpg2jRml8C-0-3aada2652ae0bb1c0e5de55a1d28e5c3)
其中都是常数.设f(x)是[-π,π]上可积和平方可积函数,称
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2245.jpg?sign=1739593284-jj6qUtcV3dCbPML7LJWIGTFlq9TJblTs-0-7acb7b36d3e022932c87d88ea42a232e)
是用三角多项式在平方平均意义下逼近f(x)的偏差.
设f(x)的傅里叶级数是
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2247.jpg?sign=1739593284-pC2YHF2oAd5zGhhgahnPW3W9NjC0HTMg-0-d7a3d9627709e3ef569db08f420ab430)
右端级数的n次部分和
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2248.jpg?sign=1739593284-pvwShj6aiStd5PdjtAi8e3MFt1G7tbam-0-301879d6ba79b25573ee467717afaae3)
是f(x)的最佳平方平均逼近,亦即对任何n次三角多项式都有
二、傅里叶变换
1.傅里叶变换的概念
称是f(x)的傅里叶变换,并把它记为F(f)或
即
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2253.jpg?sign=1739593284-4nCrTX2RxPx9Giv3T7VbtvmbAycD5DbF-0-65bc50b418eb8cfe6f22b97ef8b27364)
由f(x)的绝对可积性以及,可以得到
(1)是ω∈(﹣∞,+∞)内的连续函数;
(2)黎曼引理:
2.傅里叶变换的性质
(1)线性
,其中
是两个任意给定的常数.
(2)平移
对任何f(x),设(即f(x)的平移),那么
这个性质表明平移后的傅里叶变换等于未作平移的傅里叶变换乘
(3)导数
设f(x)→0(x→±∞),则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2262.jpg?sign=1739593284-GkLmkMr7ZsrXmfMQvJ8lcNl4zvuALCUS-0-6c72ee05b51a53ae9cba517f1836075f)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2263.jpg?sign=1739593284-y8PCKGtlqKf4W3A9V9TUpoBYkxbjxDbe-0-ea56ec28013871740867a043434ea48d)
由这一性质知,求导运算在傅里叶变换下变为乘积运算.
(4)