![MATLAB矩阵分析和计算](https://wfqqreader-1252317822.image.myqcloud.com/cover/872/26542872/b_26542872.jpg)
上QQ阅读APP看书,第一时间看更新
2.5 依克莱姆法则解线性方程组
含有n个未知量的n个方程的线性方程组取如下形式:
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P31_8249.jpg?sign=1739620558-iJobbssFVHqbbxpshBHINXHrMLot50w1-0-f4c7c6efa23504ceb190519d832101f9)
当常数项b1,b2,…,bn不全为零时,式(2-3)称为非齐次线性方程组。
如果记
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P31_8250.jpg?sign=1739620558-ih02GQF161ubz15mlsvmLM71XBPWVgyW-0-26fe678273a2575060a386d95bff6735)
式中,T表示转置,那么线性方程组(2-3)可写成矩阵形式:
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P31_8252.jpg?sign=1739620558-YUuVCouGXBpKDtJAixKUTq8yzzQN0UbH-0-bde15aaeca4700860c59cc0aa81b8d63)
此方程组有两种解法:逆矩阵法和克莱姆法则。
1. 逆矩阵法
当|A|≠0,即A的行列式不为0时,线性方程组(2-4)的解为
x=A-1b
式中,A-1是系数矩阵A的逆矩阵,x称为方程组(2-4)的解向量。
2. 克莱姆法则
若|A|≠0,线性方程组(2-3)的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8270.jpg?sign=1739620558-HfM9nh0mIZKXCnD0Ztvch6nUY9dYtA2T-0-382a0b6a36cf3b3c2a06bf66e6f26e60)
式中
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8272.jpg?sign=1739620558-r4YyehiYsCMMFduU0DmGCumC0Q0C3hd8-0-33c909249384535ce6bdcea5db086d46)
这里Δj(j=1,2,…,n)是以常数项向量b替换A中第j列向量后得到的n阶行列式。
特别地,二阶线性方程组
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8274.jpg?sign=1739620558-dwPHb3NBMfkqFCFPpIVB0zENgaPmWBuN-0-c4bc4117e5b96aa1c54742edb396355a)
的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8275.jpg?sign=1739620558-DHOyXlCCon7463N4j682oAwSQY9gmNgw-0-97ac04db75cd1622c913aa4351407fed)
式中
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8276.jpg?sign=1739620558-Qh5g1DJN3v0zJtkvt5Oic36WFwFV0ox6-0-3a56acb1471859e87ccb1383945dd15b)
三阶线性方程组
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_1430.jpg?sign=1739620558-aCDuT7WpuEhtohb7Aw0Js4t34bhq7k7o-0-456631622a5e85b4ef3b5b06a4176ce6)
的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8277.jpg?sign=1739620558-gD3QQmASdfTCWG8TzoHnt39HpjZO3Wi8-0-9b672fd7525f4f242e8961302296e57f)
式中
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8278.jpg?sign=1739620558-ci4OcbQeqH1WKxxNF16CNLb5Kea3PrzT-0-c2c8cea6a5e7f98f0dba9dbccb30a96c)
【手工计算例12】 解以下三元一次线性方程组
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_8282.jpg?sign=1739620558-icdMob2x1y64CfQbIHRb9dAkrbwbtFKs-0-514d25f1994e97e9bfdd654a85bf808c)
解:
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_8285.jpg?sign=1739620558-GpyK0oo5ABXmBnKaEgcPmsTX784PsPER-0-57e5c771fc6fbb9a71a85ce1d1e821a8)
所以
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_8286.jpg?sign=1739620558-lTE3XghrXPv5nVzvhzeZyANXZ02wqkMo-0-39ff4f6afe67670f040798f4e6d4b981)
故,原方程组的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_1566.jpg?sign=1739620558-AyQvDliQ6Ocr88bmvk9W5fLcw6YDFkeZ-0-c184d892d8c607af2c6e891a685c7954)