电工电子技术
上QQ阅读APP看书,第一时间看更新

1.5 支路电流法

支路电流法是求解复杂电路最基本的方法。复杂电路是指不能用简单的串并联方法或欧姆定律求解的电路。

所谓支路电流法就是以支路电流为电路变量,应用基尔霍夫电流定律(KCL)列写节点电流方程式,应用基尔霍夫电压定律(KVL)列出回路的电压方程式,以求得各支路电流。

运用支路电流法求解电路的步骤:

①以各支路电流为未知量,选取各支路电流的参考方向。

②若电路中有n个节点、b条支路。可列出n-1个独立的节点电流方程(KCL)。

③选取回路,并选定回路的绕行方向,可列出b-(n-1)个独立的回路电压方程(KVL)。

④联立方程,计算各支路电流。

【例1-3】 如图1-23所示,E1=80V,E2=70V,R1=5Ω,R2=3Ω,R3=5Ω,R4=2Ω,US=11V,IS=2A,试求各支路电流I1I2I3

图1-23 例1-3图

解:电路共有两个节点,n=2,三条支路,b=3。只可列写1个独立节点电流方程、2个独立回路电压方程

例如对a点列写KCL方程,流入a点电流是I1I2,流出a点电流是I3,则

I1+I2=I3

例如对左边的网孔列写KVL方程,假定回路沿顺时针方向绕行,则

E1=R1I1+R3I3

80=5I1+5I3

对右边的网孔列写KVL方程,假定回路沿逆时针方向绕行,则

E2=R4I2+R3I3+R2I2

70=2I2+5I3+3I2

联立三个方程求解,得

I1=6A,I2=4A,I3=10A

【例1-4】 如图1-24所示电路,R1=2Ω,R2=3Ω,R3=5Ω,US=11V,IS=2A,试求各支路电流。

图1-24 例1-4图

解:各支路电流的参考方向及回路绕行方向如图所示。电路有两个节点,n=2;三条支路,b=3。

对节点a:  I1+I3=I2

对回路1:  US=I2R2+I1R1

由于I3支路含有电流源IS,因此,I3=IS=2A。代入已知数据,得

I1+2=I2

11=3I2+2I1

解得:I1=1A,I2=3A。