
会员
机器意识:人工智能的终极挑战
周昌乐更新时间:2021-01-08 11:05:07
最新章节:参考文献开会员,本书免费读 >
自20世纪90年代以来,人们再次高度关注意识问题,众多哲学家、心理学家与神经科学家在此领域开展了深入的研究工作(Zelazo,2007)。与此同时,人们也开始尝试用计算方法让机器装置拥有意识能力。这类研究逐渐被称为“机器意识”(MachineConsciousness)研究,有时也用“人工意识”(ArtificialConsciousness)或偶尔用“数字觉知”(DigitalAwareness)来称呼这一领域。
品牌:机械工业出版社
上架时间:2021-01-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行
机器意识:人工智能的终极挑战最新章节
查看全部周昌乐
主页
同类热门书
最新上架
- 会员
PyTorch深度学习应用实战
《PyTorch深度学习应用实战》以统计学/数学为出发点,介绍深度学习必备的数理基础,讲解PyTorch的主体架构及最新的模块功能,包括常见算法与相关套件的使用方法,例如对象侦测、生成对抗网络、深度伪造、图像中的文字辨识、脸部辨识、BERT/Transformer、聊天机器人、强化学习、自动语音识别、知识图谱等。本书配有大量案例及图表说明,同时以程序设计取代定理证明,缩短学习过程,增加学习乐趣。计算机15.2万字 - 会员
Keras深度学习与神经网络
本书从人工智能导论入手,阐述人工智能的发展及现状,重点介绍了机器学习和神经网络基础、反向传播原理、卷积神经网络和循环神经网络等内容。本书内容由浅入深,循序渐进,从神经元和感知机入手,逐步讲解深度学习中神经网络基础、反向传播以及更深层次的卷积神经网络、循环神经网络。本书知识体系完整,内容覆盖面广,介绍了深度学习中常用的模型和算法,助力读者多方位掌握深度学习的相关知识。本书可作为高等院校计算机等相关专计算机11万字 - 会员
AI自媒体写作超简单
本书结合作者10多年写作经验,基于AI应用ChatGPT、文心一言、智谱清言、讯飞星火、通义千问、Kimi等,详细介绍了使用AI写作的流程、方法和技巧,旨在帮助想要通过内容输出加速个人发展的读者,快速掌握AI自媒体写作的方法和技巧。本书分为11章,涵盖AI自媒体写作概述、AI提示词、AI起标题、AI做选题、AI角色化写作、AI套路化写作、AI仿写、AI模块化写作、AI改写、AI润色、AI智能体写作计算机9.2万字 - 会员
《机器学习》习题参考
本书配套周志华教授所著的《机器学习》教材,通过大量习题考查读者对机器学习相关知识点的理解与掌握。全书分为两个部分:第一部分习题对应《机器学习》第1~10章的内容,包括绪论、模型评估与选择、线性模型、决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习;第二部分包含6章应用专题,通过综合题的形式对知识点进行多角度考查,包括线性模型的优化与复用、面向类别不平衡数据的分类、神经网络计算机19.3万字 - 会员
机器学习
机器学习是计算机科学与人工智能的重要分支领域.本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面.全书共16章,大致分为3个部分:第1部分(第1~3章)介绍机器学习的基础知识;第2部分(第4~10章)讨论一些经典而常用的机器学习方法(决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习);第3部分(第11~16章)为进阶知识,内容涉及特征选择与稀疏学习、计算计算机22.7万字 - 会员
洞察AIGC:智能创作的应用、机遇与挑战
《洞察AIGC:智能创作的应用、机遇与挑战》内容分为3篇:第1篇AIGC的蜕变讲述AIGC的发展历史及其背后的智能;第2篇AIGC的应用讲述AIGC在文学创作、日常办公、知识管理、科研出版、工业制造、健康医疗、金融服务、品牌营销领域的应用现状及常用工具;第3篇AIGC的机遇与挑战讲述AIGC的资本与技术前景,同时提出需要注意的风险。计算机13.9万字 - 会员
PyTorch 2.0深度学习从零开始学
PyTorch是一个开源的机器学习框架,它提供了动态计算图的支持,让用户能够自定义和训练自己的神经网络,目前是机器学习领域中的框架之一。《PyTorch2.0深度学习从零开始学》共分15章,内容包括PyTorch概述、开发环境搭建、基于PyTorch的MNIST分类实战、深度学习理论基础、MNIST分类实战、数据处理与模型可视化、基于PyTorch卷积层的分类实战、PyTorch数据处理与模型可计算机11.3万字 - 会员
基于信息增强的图神经网络学习方法研究
本书深入剖析了图神经网络领域所面临的两大核心挑战:深度加深模型退化和监督信息过度依赖。针对这两大挑战,本书提出了一系列解决思路,涵盖模型结构设计、训练策略优化等方面的内容。全书共7章,第1章主要介绍了图神经网络研究的背景与意义,阐述了近年来国内外网络表示学习与图神经网络的研究现状,分析了图神经网络当前面临的挑战及其主要问题等;第2章主要对图神经网络进行概要论述,包括基础的理论、典型的模型方法及应用计算机8.1万字 - 会员
如何教人工智能说人话?
AI的本质是什么?自然语言和人工语言的区别在哪里?ChatGPT究竟是人工智能发展道路上的里程碑,还是某种误入歧途的“假AI”?我们不许诺美丽空洞的AI前景,而是告诉读者,未来的AI之路到底有多少激流险滩——对于统计学工具与硬件升级的片面崇拜,对于智能科学基本原理的蔑视,是目前AI研究的大危机。在我们看来,万众期待的ChatGPT,只是新时代的“牛顿炼金术”。计算机17.8万字
同类书籍最近更新