
会员
大数据智能核心技术入门:从大数据到人工智能
更新时间:2019-07-26 18:52:13
最新章节:反侵权盗版声明开会员,本书免费读 >
本书跟从大数据和人工智能应用的融合之路,通过分析和解读整个数据驱动智能核心技术,希望能给读者提供一个大数据智能核心技术体系的入门学习和应用参考指南。本书前半部分内容重在核心技术解读:包括大数据智能的概论、大数据智能核心技术体系的多维解读、深度学习关键技术要点的分析,大数据智能应用三段论和敏捷大数据方法论的提出等内容。后半部分内容重在应用实践的探讨,深入分析了当前大数据智能独角兽Palantir、AlphaGo、Watson等核心产品和技术,并从个人学习到工程实践,从企业应用到政府治理,从业务理解到技术选型等多个层面,逐一解读大数据智能技术在学习、应用过程中面临的关键问题、陷阱,并给出参考意见。本书通过核心技术解读帮助读者学习、理解、应用大数据智能,具有重要的参考价值。本书适合的读者包括关注大数据和人工智能相关技术领域的在校学生、个人学习者和研发工程师、技术主管、企业高管、政府管理人员等。
上架时间:2019-04-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行
大数据智能核心技术入门:从大数据到人工智能最新章节
查看全部最新上架
智能汽车软件功能安全
这是一本从实践角度系统且深入地讲解智能汽车软件功能安全和智能汽车软件研发的著作,得到了中国工程院院士李克强等13位产业界和学术界专家的一致推荐。作者在功能安全领域深耕10余年,有扎实的理论基础、丰富的实践经验,用挖掘本质的思维方法来撰写本书,从研发体系、架构设计、开发流程、开发方法、安全措施、创新研究等维度对智能汽车软件功能安全做了深入的讲解。全书共11章,分为3个部分。第一部分(第1~3章)智能计算机25.9万字- 会员
Sora革命:重塑人工智能
Sora是一个文本生成视频工具,本书介绍了Sora在视频生成领域的巨大潜力。本书共9章,系统讲解人工智能的演进、Sora的应用实践、Sora深度解析、Sora的挑战与未来等。本书内容全面、图文并茂、经典易懂,适合想要学习Sora的初学者,以及想要学习文本生成文本、文本生成图片、文本生成视频等内容的人工智能爱好者、自媒体从业人员、短视频制作者、设计师、相关专业的企业和高校人员阅读。计算机3.2万字 - 会员
AI高效工作一本通
本书共九章,分别介绍AI写作工具、AI优化简历、职场入门AI写作、AI项目策划、AI项目复盘、AI高效办公、AI高效沟通、让职场更轻松的软件和AI职场视频剪辑等内容。计算机10.1万字 - 会员
机器学习
机器学习是计算机科学与人工智能的重要分支领域.本书作为该领域的入门教材,在内容上尽可能涵盖机器学习基础知识的各方面.全书共16章,大致分为3个部分:第1部分(第1~3章)介绍机器学习的基础知识;第2部分(第4~10章)讨论一些经典而常用的机器学习方法(决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习);第3部分(第11~16章)为进阶知识,内容涉及特征选择与稀疏学习、计算计算机22.7万字 - 会员
机器学习(第2版)
机器学习是人工智能的重要技术基础,涉及的内容十分广泛。本书涵盖了机器学习和深度学习的基础知识,主要包括机器学习的概述、统计学基础、分类、聚类、神经网络、贝叶斯网络、支持向量机、文本分析、分布式机器学习算法等经典的机器学习基础知识,还包括卷积神经网络、循环神经网络、生成对抗网络、目标检测、自编码器等深度学习的内容。此外,本书还介绍了机器学习的热门应用领域推荐系统以及强化学习等主题。本书深入浅出、内容计算机30.2万字 - 会员
如何教人工智能说人话?
AI的本质是什么?自然语言和人工语言的区别在哪里?ChatGPT究竟是人工智能发展道路上的里程碑,还是某种误入歧途的“假AI”?我们不许诺美丽空洞的AI前景,而是告诉读者,未来的AI之路到底有多少激流险滩——对于统计学工具与硬件升级的片面崇拜,对于智能科学基本原理的蔑视,是目前AI研究的大危机。在我们看来,万众期待的ChatGPT,只是新时代的“牛顿炼金术”。计算机17.8万字 - 会员
大模型应用开发:核心技术与领域实践
本书由科大讯飞与中国科大的大模型的资深专家联合撰写,一本书打通大模型的技术原理与应用实践壁垒,深入大模型3步工作流程,详解模型微调、对齐优化、提示工程等核心技术及不同场景的微调方案,全流程讲解6个典型场景的应用开发实践。本书共10章,从逻辑上分为“基础知识”“原理与技术”“应用开发实践”三部分。基础知识(第1章)介绍大模型定义、应用现状、存在的问题,以及发展趋势。原理与技术(第2和3章)详细讲解大计算机12.3万字 - 会员
Keras深度学习与神经网络
本书从人工智能导论入手,阐述人工智能的发展及现状,重点介绍了机器学习和神经网络基础、反向传播原理、卷积神经网络和循环神经网络等内容。本书内容由浅入深,循序渐进,从神经元和感知机入手,逐步讲解深度学习中神经网络基础、反向传播以及更深层次的卷积神经网络、循环神经网络。本书知识体系完整,内容覆盖面广,介绍了深度学习中常用的模型和算法,助力读者多方位掌握深度学习的相关知识。本书可作为高等院校计算机等相关专计算机11万字 - 会员
基于信息增强的图神经网络学习方法研究
本书深入剖析了图神经网络领域所面临的两大核心挑战:深度加深模型退化和监督信息过度依赖。针对这两大挑战,本书提出了一系列解决思路,涵盖模型结构设计、训练策略优化等方面的内容。全书共7章,第1章主要介绍了图神经网络研究的背景与意义,阐述了近年来国内外网络表示学习与图神经网络的研究现状,分析了图神经网络当前面临的挑战及其主要问题等;第2章主要对图神经网络进行概要论述,包括基础的理论、典型的模型方法及应用计算机8.1万字